ANALISIS MATEMATICO A/UNICA/ C. UNIVERSITARIA - 2° cuatr. 2020

Comenzado el martes, 2 de marzo de 2021, 09:05

Estado Finalizado

Finalizado en martes, 2 de marzo de 2021, 11:57

Tiempo empleado 2 horas 51 minutos

Comentario - Calificación: 5 (cinco) - Aprobado

Pregunta 1

Incorrecta

Puntúa como 1

Sea
$$S=\sum_{n=0}^{\infty}rac{n^3+2}{n^p+1}$$
 con $p>0$. Entonces S

Seleccione una:

onverge si 0 y diverge si <math>p > 4

lacksquare converge si p>3 y diverge si $0< p\leq 3$

La respuesta correcta es: converge si p>4 y diverge si $0< p\leq 4$

Pregunta 2

Correcta

Puntúa como 1

Sea $f(x)=(e^{2x}-5x)^2$. La pendiente de la recta tangente al gráfico de f en el punto de abscisa x=0 es igual a

Seleccione una:

4

6

-4

-6

La respuesta correcta es: -6

Correcta

Puntúa como 1

El área comprendida entre el gráfico de $f(x)=2(x-6)^3\,$ y los dos ejes coordenados es igual a

Seleccione una:

- **2592**
- 648
- **72**
- 864

La respuesta correcta es: 648

Pregunta 4

Incorrecta

Puntúa como 1

Sea $f(x)=rac{2x}{\ln x}$ definida en su dominio natural. El conjunto imagen de f es Imf=

Seleccione una:

- \bigcirc \mathbb{R}
- $[e; +\infty)$
- \bigcirc $[2e;+\infty)$
- $(-\infty;0)\cup[2e;+\infty)$

La respuesta correcta es: $(-\infty;0) \cup [2e;+\infty)$

Pregunta 5

Correcta

Puntúa como 1

Sea $f:(-\infty;7] o\mathbb{R}$ cuya función derivada es $f'(x)=x^2(x-5)\sqrt{7-x}$. Entonces f crece en

Seleccione una:

- $(-\infty;0)$ y en (5;7)
- (5;7)
- $\bigcirc \quad (0;5)$
- $(-\infty;5)$

La respuesta correcta es: (5;7)

Correcta

Puntúa como 1

El radio r de convergencia de la serie de potencias $\displaystyle\sum_{n=1}^{\infty}\left(rac{2n+1}{2n+4}
ight)^{n^2}x^n$ es r=

Seleccione una:

- $e^{1,5}$
- $e^{-1,5}$
- e^{ϵ}
- e^{-6}

La respuesta correcta es: $e^{1,5}$

Pregunta 7

Correcta

Puntúa como 1

$$\mathsf{El}\, \lim_{x\to 2} \frac{x^2-2x-2\,\mathrm{sen}\,(x-2)}{(x-2)^2(x+4)} =$$

Seleccione una:

- $-+\infty$
- $-\frac{1}{6}$
- $\frac{1}{6}$
- 0

La respuesta correcta es: $\frac{1}{6}$

Pregunta 8

Correcta

Puntúa como 1

El
$$\displaystyle \lim_{n o +\infty} n \left(\sqrt{n^2 + a} - \sqrt{n^2 + 9}
ight) = a - 3$$
 , para

Seleccione una:

- a = -3
- \bigcirc a=3
- a = -6
- \bigcirc ningún a

La respuesta correcta es: a=-3

Incorrecta

Puntúa como 1

Sea
$$f:(rac{1}{6};+\infty) o\mathbb{R}$$
 definida como $f(x)=egin{cases} rac{-\ln{(1+6x)}}{x} & ext{si } x
eq 0 \ -6 & ext{si } x=0 \end{cases}$. Entonces $f'(0)$

Seleccione una:

- no existe
- \bigcirc = 0
- -18
- = 18

La respuesta correcta es: =18

Pregunta 10

Correcta

Puntúa como 1

$$\operatorname{El}\lim_{n\to+\infty}\sqrt[n]{2^n+3^n+5^n}\,=\,$$

Seleccione una:

- 5
- **2**
- 3
- **10**

La respuesta correcta es: 5

Pregunta 11

Incorrecta

Puntúa como 1

Sea
$$g(x)=1-4x+\sqrt{f(x)}\,$$
 cuyo polinomio de Taylor de orden 2 en $x_0=0$ es $p(x)=2-5x+3x^2$. Entonces $f''(0)=$

Seleccione una:

- 13
- **16**
- 8
- **14**

La respuesta correcta es: 14

Incorrecta

Puntúa como 1

Sea $f:[0;+\infty) o\mathbb{R}$ definida como $f(x)=\left\{egin{array}{ll} \dfrac{2-\sqrt{x}}{\sqrt{x+5}-3} & ext{si }x
eq 4 \ a & ext{si }x=4 \end{array}
ight.$ Entonces f es continua en x=4 si a=

Seleccione una:

- $\frac{2}{3}$
- $-\frac{3}{2}$
- $-\frac{2}{3}$

La respuesta correcta es: $-\frac{3}{2}$

Pregunta 13

Correcta

Puntúa como 1

Sea $A=\{3-rac{1}{n};n\in\mathbb{N}\}$. Entonces

Seleccione una:

- igcup A no tiene ni ínfimo ni supremo
- igcup A no tiene ínfimo ; $\sup A=3$
- lacksquare inf A=2 ; $\sup A=3$

La respuesta correcta es: $\inf A=2\,$; $\sup A=3\,$

Pregunta 14

Incorrecta

Puntúa como 1

Sea $f:[6;12] o\mathbb{R}$ dada por $f(x)=rac{x^2}{x-5}$. Si x_M es donde f alcanza el valor máximo, entonces $f(x_M)=$

Seleccione una:

- 49
- 36
- **20**

La respuesta correcta es: 36

Correcta

Puntúa como 1

Una primitiva de
$$f(x)=rac{\ln{(3x+1)}}{6x+2}\,$$
 es $F(x)=$

Seleccione una:

- $\bigcirc \quad rac{1}{6} \mathrm{ln}^2 \left(3x + 1
 ight)$
- $\bigcirc \quad \frac{1}{6}\ln\left(3x+1\right)$
- $\bigcirc \quad \frac{1}{12} \ln \left(3x + 1 \right)$
- $\bigcirc \qquad rac{1}{12} \mathrm{ln}^2 \left(3x + 1
 ight)$

La respuesta correcta es: $rac{1}{12} \ln^2 \left(3x + 1
ight)$

Pregunta 16

Correcta

Puntúa como 1

Sean
$$K=\int_0^1 x^4 e^{12x} dx$$
 y $J=\int_0^1 x^3 e^{12x} dx$. Entonces $J=$

Seleccione una:

- $\bigcirc \qquad \frac{e^{12}}{4} 3K$
- -3K
- $\bigcirc \quad \frac{e^{12}}{4} \frac{1}{4}K$
- $\bigcirc \quad \frac{e^{12}}{12} \frac{1}{3}K$

La respuesta correcta es: $rac{e^{12}}{4} - 3K$

Incorrecta

Puntúa como 1

Sea f la función que satisface $x^3f'(x)+rac{4x+10}{f^2(x)}=0\,$ para x
eq 0 y f(1)=1. Entonces f(x)=

Seleccione una:

$$\bigcirc \quad \sqrt[3]{\frac{4}{x}-\frac{10}{x^2}+7}$$

$$\bigcirc \qquad \sqrt[3]{rac{4}{x} + rac{10}{x^2} - 13}$$

La respuesta correcta es: $\sqrt[3]{\frac{12}{x} + \frac{15}{x^2} - 26}$

Pregunta 18

Correcta

Puntúa como 1

Sea f una función continua que satisface $\int_0^{2x} f(t)dt = e^{2x} - x^2 - 1\,$ para $x\in \mathbb{R}.$ Entonces f(1) =

Seleccione una:

$$e^2 - 1$$

$$\bigcirc \qquad e-rac{1}{2}$$

$$2e^2-2$$

$$\bigcirc$$
 $2e-rac{1}{2}$

La respuesta correcta es: $e-rac{1}{2}$

Correcta

Puntúa como 1

El área comprendida entre los gráficos de $f(x)=e^{x-2}$, $g(x)=e^{rac{1}{2}x}$ y la recta y=1 se obtiene calculando

Seleccione una:

$$=\int_0^2 (g(x)-1)dx + \int_2^4 (g(x)-f(x))dx$$

$$\int_0^2 (f(x)-1) dx + \int_2^4 (f(x)-g(x)) dx$$

$$\int_0^2 (f(x)-g(x))dx + \int_2^4 (g(x)-f(x))dx$$

$$\int_0^2 (g(x)-f(x))dx+\int_2^4 (f(x)-g(x))dx$$

La respuesta correcta es: $\int_0^2 (g(x)-1)dx + \int_2^4 (g(x)-f(x))dx$

Pregunta 20

Incorrecta

Puntúa como 1

La función f satisface $f"(x) = 8x - \cos x\,$ y f(0) = f'(0) = 2. Entonces f(x) =

Seleccione una:

$$\bigcirc \quad \frac{4x^3}{3} + 2x - \cos x + 3$$

$$\bigcirc \quad \frac{4x^3}{3} - \cos x + 3$$

$$\bigcirc \quad \frac{4x^3}{3} + 2x + \cos x + 1$$

La respuesta correcta es: $\frac{4x^3}{3} + 2x + \cos x + 1$

▼ Formulario previo al examen final (A) - Febrero/Marzo 2021

Certificado de examen - Final Integrador >

Volver a: EXAMEN FINAL IN... →