14/06/2023 TEMA 9

Hoja 1 de 4

APELLIDO:		
NOMBRE:	CALIFICACIÓN:	
DNI (registrado en SIU Guaraní):		
E-MAIL:	DOCENTE (nombre y apellido):	
TEL:		
AULA:		

Tabla de uso exclusivo para el docente

	1	2	3	4
Puntaje de cada ejercicio	2,50	2,50	2,50	2,50

Duración del examen: 1h 40'. Completar los datos personales con letra clara, mayúscula e imprenta.

No se aceptarán respuestas en lápiz.

1. Calcular la siguiente integral $\int \left(\frac{2x+2}{3x^2+6x}\right) dx =$

Para resolver estos ejercicios se tendrán en cuenta los temas abordados durante todo el cuatrimestre: Funciones-Operaciones con polinomios- Integrales inmediatas- Integrales por sustitución.

Para resolver esta integral primero podemos sacar un factor común en el denominador:

$$\int \frac{2x+2}{3\cdot(x^2+2x)}dx =$$

Como la derivada de la expresión $x^2 + 2x$ es la expresión que tenemos en el numerador, entonces podemos plantear una sustitución:

$$u = x^2 + 2x$$
$$du = 2x + 2 dx$$

Realizando la sustitución correspondiente, queda:

$$\int \frac{2x+2}{3\cdot(x^2+2x)}dx = \int \frac{du}{3\cdot u}$$
$$\int \frac{2x+2}{3\cdot(x^2+2x)}dx = \frac{1}{3}\int \frac{du}{u}$$
$$\int \frac{2x+2}{3\cdot(x^2+2x)}dx = \frac{1}{3}\ln|u| + C$$

Sustituyendo nuevamente a u por $x^2 + 2x$, queda:

$$\int \frac{2x+2}{3\cdot(x^2+2x)}dx = \frac{1}{3}\ln|x^2+2x| + C$$

APELLIDO Y NOMBRE: DNI: TEMA 9
Hoja 2 de 4

2. La recta tangente al gráfico de la función f(x) en el punto (2; f(2)) es y = -3x + 2. Determinar el valor de f(2) y f'(2).

Sabemos que una de las características de la recta tangente a una función en el punto dado es que dicho punto pertenezca a la función y a la recta, por lo tanto, podemos hallar f(2) utilizando a y = -3x + 2. Con lo cual:

$$y = -3.2 + 2$$

$$y = -4 \rightarrow f(2) = -4$$

Por otra parte, sabemos por definición de recta tangente que: $f'(x_0) = m$

Por lo tanto: f'(2) = -3.

Para resolver este ejercicio utilizamos los contenidos de derivadas y recta tangente.

.UBAXXI

APELLIDO Y NOMBRE:

TEMA 9 Hoja 3 de 4

3. Comprobar que la función $f(x) = e^{-x^2+3x}$ alcanza un máximo absoluto en el intervalo $\left[\frac{1}{2}; 2\right]$.

DNI:

La función f está definida para todo número real por lo que $Dom(f) = \mathbb{R}$.

Buscamos la derivada:

$$f'(x) = e^{-x^2+3x} \cdot (-x^2+3x)'$$

$$f'(x) = e^{-x^2 + 3x} \cdot (-2x + 3)$$

El dominio de la derivada es también el conjunto de los números reales.

Igualamos a cero la derivada para obtener los puntos críticos:

$$f'(x) = 0$$

$$e^{-x^2+3x}$$
. $(-2x+3)=0$

De donde es: -2x + 3 = 0

Luego, el punto crítico es igual a $x = \frac{3}{2}$.

Recordemos que:

• si f'(x) > 0 para todo x que pertenece al intervalo (a; b), entonces la función f es creciente en el intervalo (a; b)

• si f'(x) < 0 para todo x que pertenece al intervalo (a; b), entonces la función f es decreciente en el intervalo (a; b).

Analizamos qué sucede con los intervalos $\left(-\infty; \frac{3}{2}\right) y\left(\frac{3}{2}; +\infty\right)$

Intervalo	$\left(-\infty;\frac{3}{2}\right)$	$\left(\frac{3}{2};+\infty\right)$
Para	$x = \frac{1}{2}$	x = 2
Signo de f'	f'(x) = 6,98 > 0	f'(x) = -7,39 < 0
Conclusión	$f \text{ crece en}$ $\left(-\infty; \frac{3}{2}\right)$	f decrece en $\left(\frac{3}{2}; +\infty\right)$

- En $x = \frac{3}{2}$ la derivada pasa de positiva a negativa por lo que la función alcanza un máximo en el intervalo $[\frac{1}{2}; 2]$ y es $\frac{M\acute{a}x = \left(\frac{3}{2}; e^{9/4}\right)}{2}$.

APELLIDO Y NOMBRE: DNI: **TEMA 9**Hoja 4 de 4

4. Sabiendo que f(-1) = 3, que f'(-1) = 2, hallar la derivada de g(x) en x = -1, siendo $g(x) = 3x \cdot f(x)$.

Hallar la derivada de g(x) en x = -1 significa calcular el valor de g'(-1).

Teniendo en cuenta que $g(x) = 3x \cdot f(x)$, hallamos su derivada utilizando la regla de derivación para el producto de funciones:

$$g'(x) = 3.f(x) + 3x.f'(x)$$

Por lo tanto:

$$g'(-1) = 3.f(-1) + 3.(-1).f'(-1)$$

Reemplazando con la información dada en el enunciado:

$$g'(-1) = 3.3 + 3.(-1).2 \Rightarrow g'(-1) = 3$$