UBAXXI - Álgebra A - Resolución Examen Final - 16/07/25 - Tema 2

- Ejercicio 1 (1.25 pto.)

Dados \vec{v} y \vec{w} dos vectores de \mathbb{R}^3 tales que $\vec{v} = (2; 0; 4)$ y $\vec{w} = (2; -2; 0)$. Elegí la opción que muestra el valor de $m \in \mathbb{Z}$ para que se cumpla que los vectores $\vec{z_1} = \vec{v} - \vec{w}$ y $\vec{z_2} = m\vec{w} - \vec{v}$ sean ortogonales.

A) $\frac{1}{4}$

B) -4

C) 4

D) 16

Opción correcta: B)

Resolución

Como $\vec{z_1} = \vec{v} - \vec{w} = (0; 2; 4)$ y $\vec{z_2} = m\vec{w} - \vec{v} = (2m - 2; -2m; -4)$ entonces $\vec{z_1} \cdot \vec{z_2} = (0; 2; 4) \cdot (2m - 2; -2m; -4) = 0$ y de ahí -4m - 16 = 0 es decir m = -4. Estos contenidos los podés encontrar en la sesión 1.

- Ejercicio 2 (1.25 pto.)

Calculá de manera exacta la amplitud del ángulo que forman los planos de ecuación: $\pi_1: -2x-2y-z=9$ y $\pi_2: 2y+2z=-5$.

Respuesta: $\frac{\pi}{4}$

Resolución

El ángulo entre los planos es el mismo que determinan sus vectores normales: $\vec{N}_1 = (-2; -2; -1)$ y $\vec{N}_2 = (0; 2; 2)$. El mismo se calcula mediante la fórmula de producto escalar: $(-2; -2; -1) \cdot (0; 2; 2) = ||(-2; -2; -1)|| \cdot ||(0; 2; 2)|| \cdot \cos(\alpha)$. Si se despeja α se obtiene que $\alpha = \frac{3\pi}{4}$ y su suplemento es $\frac{\pi}{4}$. Estos contenidos los podés encontrar en la sesión 2.

- Ejercicio 3 (1.25 pto.)

Considerá el subespacio $S = \langle (4;1;-1;0); (8;-3;-2;0); (0;5;0;0); \vec{v} \rangle$. Indicá la única afirmación que resulta verdadera.

- A) La dimensión de S es 3 para todo \vec{v} .
- B) La dimensión de S es 2 si $\vec{v} = (0; 1; 0; 0)$.
- C) La dimensión de S es 3 si $\vec{v} = (0; 1; 0; 0)$.
- D) La dimensión de S es 4 para todo \vec{v} que no sea nulo.

Opción correcta: B)

Resolución

Como $(8; -3; -2; 0) = 2 \cdot (4; 1; -1; 0) - (0; 5; 0; 0)$, podemos concluir que

 $S = \langle (4;1;-1;0); (8;-3;-2;0); (0;5;0;0); \vec{v} \rangle = \langle (4;1;-1;0); (0;5;0;0); \vec{v} \rangle$. De aquí podemos observar que la dimensión de este subespacio será 3 sólo si \vec{v} no es combinación lineal de los vectores (4;1;-1;0) y (0;5;0;0), pues estos dos vectores son linealmente independientes, y en otro caso será 2. Siguiendo, como $(0;1;0;0) = \frac{1}{5} \cdot (0;5;0;0)$, la dimensión de S resulta 2 para $\vec{v} = (0;1;0;0)$. Estos contenidos los podés encontrar en la sesión 4.

- Ejercicio 4 (1.25 pto.)

Considerá V al vértice de la parábola $x^2+4x-20y+64=0$, y C al centro de la hipérbola $\frac{(x-3)^2}{7}-\frac{(y-4)^2}{18}=1$. Determiná <u>el valor exacto</u> del radio de la circunferencia con centro en C que pasa por V.

Respuesta: $\sqrt{26}$

Resolución

La expresión canónica de la parábola es $(x+2)^2=20(y-3)$, por lo que V=(-2;3), y de la expresión de la hipérbola surge que C=(3;4). Es posible calcular la distancia entre V y C o determinar la ecuación de la circunferencia con centro en C que pasa por V:

 $(x-3)^2 + (y-4)^2 = 26$ para calcular de forma exacta el valor del radio que es $\sqrt{26}$. Estos contenidos los podés encontrar en las sesiones 5 y 6.

- Ejercicio 5 (1.25 pto.)

Considerá la matriz $B = \begin{pmatrix} 1-k & 3 & 2 \\ 0 & 2+k & 1 \\ 0 & -1 & 2-k \end{pmatrix}$. Elegí la opción que muestra todos los

valores de $k \in \mathbb{R}$ de manera tal que la matriz no sea invertible.

A)
$$k \neq 1, k \neq -\sqrt{5}, k \neq \sqrt{5}$$

C)
$$k = -1, |k| = \sqrt{5}$$

B)
$$k = -1, k = \sqrt{5}$$

D)
$$k = 1, |k| = \sqrt{5}$$

Opción correcta: D)

Resolución

Una matriz no admite inversa si su determinante asociado es nulo. Si se calcula el determinante de la matriz B se obtiene $\det(B) = k^3 - k^2 - 5k + 5$. Si se aplica el lema de Gauss y la regla de Ruffini, se obtiene que los valores que anulan el determinante son $k = 1, k = -\sqrt{5}, k = \sqrt{5}$. Estos contenidos los podés encontrar en las sesiones 9 y 10.

- Ejercicio 6 (1.25 pto.)

Indicá el valor de $k \in \mathbb{R}$ de modo que se cumpla que al aplicar una rotación en sentido contrario a las agujas del reloj de ángulo $\frac{\pi}{4}$ a $(-3\sqrt{2};\sqrt{2})$ se obtiene como imagen (k;-2).

Respuesta: -4

Resolución

Usando la matriz de una rotación en sentido contrario a las agujas del reloj para \mathbb{R}^2 podemos plantear la condición indicada y hallar el valor de k pedido:

2

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \cdot \begin{pmatrix} -3\sqrt{2} \\ \sqrt{2} \end{pmatrix} = \begin{pmatrix} k \\ -2 \end{pmatrix} \to \begin{pmatrix} -4 \\ -2 \end{pmatrix} = \begin{pmatrix} k \\ -2 \end{pmatrix}$$

Estos contenidos los podés encontrar en la sesión 12.

- Ejercicio 7 (1.25 pto.)

Elegí la opción que ofrece la mejor aproximación a los centésimos del argumento de $(3+i)^5$.

- A) 1,61
- B) 18,43
- C) 0,32
- D) 1,69

Opción correcta: A)

Resolución

El argumento de 3+1i se calcula como $\alpha=arctg\left(\frac{1}{3}\right)$. Como se pide el argumento de $(3+1i)^5$ entonces, por las propiedades de los complejos, el argumento se calcula como $arctg\left(\frac{1}{3}\right)\cdot 5\approx 1,61$. Estos contenidos los podés encontrar en la sesión 13.

- Ejercicio 8 (1.25 pto.)

Considerá el polinomio $B(x) = x^5 + 5x^3 - 8x^2 + k$, del cual se sabe que $B(\sqrt{5}i) = 0$. Calculá <u>el valor exacto</u> de la suma de todas las raíces de B(x).

Respuesta: 0

Resolución

A partir del dato es posible determinar el valor de k=-40 y expresar el polinomio obtenido como producto $B(x)=(x^2+5)(x^3-8)$. Las raíces en $\mathbb{C}[x]$ de B(x) son $x_1=2,\ x_2=\sqrt{5}i,\ x_3=-\sqrt{5}i,\ x_4=-1+\sqrt{3}i$ y $x_5=-1-\sqrt{3}i$ Estos contenidos los podés encontrar en la sesión 14.