30/05/25 Tema 2

PUNTAJE 1) 2,5 puntos 2) a) 1 punto b) 1 punto 3) 2 puntos	4 al 10) 0,5 cada uno
--	-----------------------

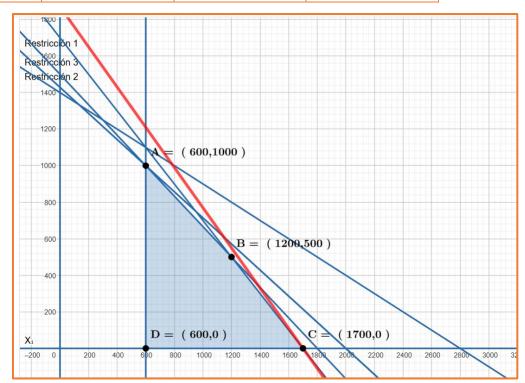
• Ejercicio 1

Un empresario desea fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado y control de calidad. Los congeladores requieren, respectivamente, 2,5 y 3 horas respectivamente para ensamblaje, para el pintado 3 y 6 Kg de esmalte y 10 y 14 horas para el control de calidad. Los costos totales de fabricación por unidad son, respectivamente, \$30 y \$28, y los precios de venta \$52 y \$48, todos ellos en miles de pesos. El empresario dispone semanalmente de 4.500 horas para ensamblaje, de 8.400 Kg. de esmalte y 20.000 horas para control de calidad. Los estudios de mercado muestran que la demanda semanal de congeladores no supera las 1.700 unidades y que, en particular, la de tipo A es de, al menos, 600 unidades. Se desea conocer el plan de producción que maximice el beneficio, resuelva empleando el método gráfico.

Modelizamos el problema, considerando a x el número congeladores tipo A e y al número de congelares tipo B

$$Z = 22x + 20y$$
 Maximizar

	\boldsymbol{A}	В	Disponibilidad
Ensamblaje	2,5 horas	3 horas	4500 horas
Pintura	3kg	6kg	8400kg
Control de Calidad	10 horas	14 horas	20.000 horas
Beneficio	\$22	\$20	



Sujeto a
$$\begin{cases} 2,5x + 3y \le 4500 \\ 3x + 6y \le 8400 \\ 10x + 14y \le 20.000 \\ x + y \le 1700 \\ x \ge 600 \end{cases} con \begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$$

Punto	Coordenadas (X ₁ ,X ₂)	Valor de la Función Objetivo 22X ₁ + 20X ₂
Α	(600,1000)	22(600)+ 20(1000) = 33200
В	(1200,500)	22(1200)+ 20(500) = 36400
С	(1700,0)	22(1700)+ 20(0) = 37400
D	(600,0)	22(600)+ 20(0) = 13200

Solución óptima

Se deben producir 1700 unidades de A, y 0 de B, obteniéndose una ganacia máxima de \$ 37400 miles

• Ejercicio 2

1) a) Hallar el subespacio de \mathbb{R}^4 generado por los vectores ;

$$A = \{(1;1;0;2),(2;-1;1;1)\}$$

Planteamos la combinación lineal de los vectores de $A = \{(1; 1; 0; 2), (2; -1; 1; 1)\}$ e igualamos a un vector genérico $(x; y; z; w) \in \mathbb{R}^4$ para determinar \overline{A} o sea el subespacio generado por la familia A

 $\alpha(1;1;0;2) + \beta(2;-1;1;1) = (a;b;c;d)$ Aplicamos la multiplicación por un escalar y la adición de los vectores

$$\begin{cases} \alpha + 2\beta = a \\ \alpha - \beta = b \\ \beta = c \\ 2\alpha - 2\beta = d \end{cases}$$

$$\begin{pmatrix} \textcircled{1} & 2 & | & a \\ 1 & -1 & | & b \\ 0 & 1 & | & c \\ 2 & 1 & | & d \\ \end{pmatrix} \times (-1)$$

$$F_{2} = 1 \cdot \widetilde{F}_{1} \rightarrow F_{2}$$

$$= \begin{bmatrix} \textcircled{1} & 2 & | & a \\ 0 & -3 & | & -a+b \\ 0 & 1 & | & c \\ 2 & 1 & | & d \\ \end{bmatrix} \times (-2)$$

$$F_{4} = 2 \cdot \widetilde{F}_{1} \rightarrow F_{4}$$

$$= \begin{bmatrix} 1 & 2 & | & a \\ 0 & (-3) & | & -a+b \\ | & & & & = \\ \end{bmatrix} \times (-1)$$

$$F_{3} = (-1) \cdot \widetilde{F}_{1} \rightarrow F_{2} \rightarrow F_{3}$$

$$= \begin{bmatrix} 1 & 2 & | & a \\ 0 & (-3) & | & -a+b \\ 0$$

Para obtener el subespacio generado por la familia de vectores el sistema debe ser compatible y para ello debe cumplirse que $-a+b+3c=0 \land -a-b+d=0$, por lo tanto

$$\overline{A} = \{(a;b;c;d) \in \mathbb{R}^4 / -a + b + 3c = 0 \land -a - b + d = 0\}$$

b) ¿El vector $\vec{u} = (0;1;1;3)$ pertenece al subespacio generado por los vectores del conjunto A ?Justifique adecuadamente su respuesta

El vector u pertenece al subespacio generado si es combinación lineal de los vectores, debe cumplir las condiciones determinadas, entonces;

 $\vec{u} = (0;1;1;3) \rightarrow -0 + 1 + 3.1 = 0 \land -0 - 1 + 3 = 0 \rightarrow Ninguna de las condiciones se cumple, entonces el vector <math>\vec{u}$ NO pertenee al subespacio

• Ejercicio 3

Sea
$$Z = 100x + 20y$$
 sujeta $a \begin{cases} x + 2y \le 400 \\ 2x + 2y \le 1000 \end{cases}$ con $\begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$

Convertim

$$os\ las\ restricciones\ en\ igualdades\ sumando\ las\ variables\ de\ holgura \begin{cases} x+2y+S_1=400\\ 2x+2y+S_2=1000\\ x+y+S_3=300\\ S_1,S_2,S_3\geq 0 \end{cases}$$

Planteamos la primera tabla del simplex:

		C_j	100	20	0	0	0	Valor de la solución	
I	C_k	X_k	x	у	S_1	S_2	S_3	b	
I	0	S_1	1	2	1	0	0	400	400/1=400
	0	S_2	2	2	0	1	0	1000	1000/2=500
l	0	S_3	(1)	1	0	0	1	300	300/1=300
	2	\mathbf{Z}_{j}	0	0	0	0	0	0	
I	C_j	$-Z_j$	100-0=100	20 - 0 = 20	0 - 0 = 0	0 - 0 = 0	0 - 0 = 0		-

 $\rightarrow V.S$

↑ *V.E*

	C_j	100	20	0	0	0	Valor de la solución
C_k	X_k	x	у	S_1	S_2	S_3	b
0	S_1	0	1	1	0	-1	100
0	S_2	0	0	0	1	-2	400
100	x	1	1	0	0	1	300
2	\mathbf{Z}_{j}	100	100	0	0	100	30000
C_j	$-Z_j$	100 - 100 = 0	20 - 100 = -80	0 - 0 = 0	0 - 0 = 0	0 - 100= -100	

La solución óptima es $(x; y; S_1; S_2; S_3) = (300; 0; 100; 400; 0)$ Z = 30.000

Respuestas ejercicios de Opción múltiple

3) El vector $\vec{u} = (0; -\vec{5}; k)$ no es combinación lineal de los $\Box a) k = -3$	 □ b) ℝ-{-1,1} □ d) ℝ
	\square d) \mathbb{R} vectores del conjunto $T = \big\{ \big(1;0;-1\big), \big(2;5;1\big) \big\}$ sólo sí:
3) El vector $\vec{u} = (0; -5; k)$ no es combinación lineal de los $\Box a k = -3$	\square d) \mathbb{R} vectores del conjunto $T = \big\{ \big(1;0;-1\big), \big(2;5;1\big) \big\}$ sólo sí:
3) El vector $\vec{u} = (0; -\vec{5}; k)$ no es combinación lineal de los $\Box a) k = -3$	vectores del conjunto $T = \{(1;0;-1),(2;5;1)\}$ sólo sí:
\Box a) $k = -3$	
\Box a) $k = -3$	
	b) ∀l ∈ ID
$\Box c$) $k \neq 3$	D) VR C III
	d) $ \exists k \in \mathbb{R} $
6) El ó los valores de $m \in \mathbb{R}$ para que $S = \{(0;1;1), (-m;3)\}$	$(;-1),(1;0;m)$ constituyan una base de \mathbb{R}^3 :
\square a) $\not\exists m \in \mathbb{R}$	
$\Box c) \forall m \in \mathbb{R}$	$\square d) m = -2 \lor m = 2$
7) El plano balance que contiene todas las posibilidades	s de consumo $(x;y;z)$ para un presupuesto de \$7200,
correspondiente a tres bienes, está dado por $\frac{x_1}{120} + \frac{x_2}{150}$	$+\frac{x_3}{400}=1$
Entonces la ecuación presupuestaria es:	
$\Box \ a) \ 60x_1 + 48x_2 + 18x_3 = 1$	$ \Box b) 120x_1 + 150x_2 + 400x_3 = 7200 $
	r r r
$\Box c) 60x_1 + 48x_2 + 18x_3 = 7200$	$ \Box d) \frac{x_1}{60} + \frac{x_2}{48} + \frac{x_3}{18} = 7200 $
$\square c) 60x_1 + 48x_2 + 18x_3 = 7200$ 8) Sea $\begin{cases} x + y - 2z + 3w = 2\\ 2x - 2y + z - 2w = 3, \text{ entonces la dimensión del } \\ 3x - y - z + w = 2 \end{cases}$	
correspondiente a tres bienes, está dado por $\frac{x_1}{120} + \frac{x_2}{150}$	

-y + (m+2)z = 09) Dado el sistema homogéneo $\{-x+y-2z=0\}$ el conjunto de valores de $m \in \mathbb{R}$ para que el conjunto solución -2x + my = 0sea un subespacio de dimensión cero es: $\square \quad a) \quad \{0\}$ b) ℝ \square c) $\mathbb{R}-\{0\}$ d) Ø $x \ge 0$ $y \ge 0$ 10) Sea la región del plano $R \{x+3y \le 15 \text{ los vértices de la región de soluciones factibles son }$ $3x-y \ge 15$ \Box a) A(0;2) B(0;5) C(2;0) D(15;0) \Box b) A(5;0) B(6;3) C(15;0) \square c) A(0;0) B(0;5) C(6;3) D(5;0)□ d) No existen soluciones factibles