UBAXXI - Álgebra A - Resolución Examen Final - 16/07/25 - Tema 3

- Ejercicio 1 (1.25 pto.)

Considerá la matriz $B = \begin{pmatrix} 0 & 0 & 2-k \\ 4-k & 3 & -3 \\ 4 & -k & 2 \end{pmatrix}$. Elegí la opción que muestra todos los valores

de $k \in \mathbb{R}$ de manera tal que la matriz no sea invertible.

A)
$$k \neq 6, k \neq -2, k \neq 2$$

C)
$$k = 6, |k| = 2$$

B)
$$k = 6, k = 2$$

D)
$$k = -6, k = -2$$

Opción correcta: C)

Resolución

Una matriz no admite inversa si su determinante asociado es nulo. Si se calcula el determinante de la matriz B se obtiene $\det(B) = -k^3 + 6k^2 + 4k - 24$. Si se aplica el lema de Gauss y la regla de Ruffini, se obtiene que los valores que anulan el determinante son k = 2, k = -2, k = 6. Estos contenidos los podés encontrar en las sesiones 9 y 10.

- Ejercicio 2 (1.25 pto.)

Indicá el valor de $k \in \mathbb{R}$ de modo que se cumpla que al aplicar una rotación en sentido contrario a las agujas del reloj de ángulo $\frac{\pi}{4}$ a $(-\sqrt{2}; -\sqrt{2})$ se obtiene como imagen (0; k).

Respuesta: -2

Resolución

Usando la matriz de una rotación en sentido contrario a las agujas del reloj para \mathbb{R}^2 podemos plantear la condición indicada y hallar el valor de k pedido:

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \cdot \begin{pmatrix} -\sqrt{2} \\ -\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 \\ k \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ k \end{pmatrix}$$

Estos contenidos los podés encontrar en la sesión 12.

- Ejercicio 3 (1.25 pto.)

Elegí la opción que ofrece la mejor aproximación a los centésimos del argumento de $(1+3i)^7$.

- A) 1,25
- B) 71,56
- C) 2,47
- D) 2,60

Opción correcta: C)

Resolución

El argumento de 1 + 3i se calcula como $\alpha = \arctan(3)$. Como se pide el argumento de $(1 + 3i)^7$ entonces, por las propiedades de los complejos, el argumento se calcula como $\tan^{-1}(3) \cdot 7 \approx 8,74$, que reducido a un ángulo menor que un giro nos da 2,47.

- Ejercicio 4 (1.25 pto.)

Considerá el polinomio $A(x) = x^5 + 7x^3 - 64x^2 + k$, del cual se sabe que $A(\sqrt{7}i) = 0$. Calculá el valor exacto de la suma de todas las raíces de A(x).

Respuesta: 0

Resolución

A partir del dato es posible determinar el valor de k=-448 y expresar el polinomio obtenido como producto $A(x)=(x^2+7)(x^3-64)$. Las raíces en $\mathbb{C}[x]$ de A(x) son $x_1=4, x_2=\sqrt{7}i, x_3=-\sqrt{7}i, x_4=-2+2\sqrt{3}i$ y $x_5=-2-2\sqrt{3}i$ cuya suma es 0. Estos contenidos los podés encontrar en la sesión 14.

- Ejercicio 5 (1.25 pto.)

Dados \vec{v} y \vec{w} dos vectores de \mathbb{R}^3 tales que $\vec{v}=(0;2;4)$ y $\vec{w}=(-2;2;0)$. Elegí la opción que muestra el valor de $m\in\mathbb{Z}$ para que se cumpla que los vectores $\vec{z_1}=\vec{v}-\vec{w}$ y $\vec{z_2}=m\vec{w}-\vec{v}$ sean ortogonales.

A) $\frac{1}{4}$

B) 4

C) -4

D) 16

Opción correcta: C)

Resolución

Como $\vec{z_1} = \vec{v} - \vec{w} = (2; 0; 4)$ y $\vec{z_2} = m\vec{w} - \vec{v} = (-2m; 2m - 2; -4)$ entonces $(2; 0; 4) \cdot (-2m; 2m - 2; -4) = 0$ y de ahí -4m - 16 = 0 es decir m = -4.

Estos contenidos los podés encontrar en la sesión 1.

- Ejercicio 6 (1.25 pto.)

Calculá <u>de manera exacta</u> la amplitud del ángulo que forman los planos de ecuación:

 $\pi_1 : 4x + 4y + 2z = 7 \text{ y } \pi_2 : -2x - 2z + 1 = 0.$

Respuesta: $\frac{\pi}{4}$

Resolución

El ángulo entre los planos es el mismo que determinan sus vectores normales: $\vec{N}_1 = (4;4;2)$ y $\vec{N}_2 = (-2;0;-2)$. El mismo se calcula mediante la fórmula de producto escalar:

 $(4;4;2)\cdot(-2;0;-2)=||(4;4;2)||\cdot||(-2;0;-2)||\cdot\cos(\alpha)$. Si se despeja α se obtiene que $\alpha=\frac{3\pi}{4}$ y su suplemento es $\frac{\pi}{4}$. Estos contenidos los podés encontrar en la sesión 2.

- Ejercicio 7 (1.25 pto.)

Considerá el subespacio $S = \langle (5;5;-1;0); (10;13;-2;0); (0;3;0;0); \vec{v} \rangle$. Indicá la única afirmación que resulta verdadera.

- A) La dimensión de S es 3 para todo \vec{v} .
- B) La dimensión de S es 3 si $\vec{v} = (0; 1; 0; 0)$.
- C) La dimensión de S es 2 si $\vec{v} = (0; 1; 0; 0)$.

Estos contenidos los podés encontrar en la sesión 4.

D) La dimensión de S es 4 para todo \vec{v} que no sea nulo.

Opción correcta: C)

Resolución

Como $(10; 13; -2; 0) = 2 \cdot (5; 5; -1; 0) + (0; 3; 0; 0)$, podemos concluir que $S = \langle (5; 5; -1; 0); (10; 13; -2; 0); (0; 3; 0; 0); \vec{v} \rangle = \langle (5; 5; -1; 0); (0; 3; 0; 0); \vec{v} \rangle$. De aquí observamos que la dimensión de este subespacio será 3 sólo si \vec{v} no es combinación lineal de los vectores (5; 5; -1; 0) y (0; 3; 0; 0), en otro caso será 2 puesto que estos dos son linealmente independientes. Siguiendo, como $(0; 1; 0; 0) = \frac{1}{3} \cdot (0; 3; 0; 0)$, la dimensión de S resulta 2 para $\vec{v} = (0; 1; 0; 0)$.

- Ejercicio 8 (1.25 pto.)

Considerá V el vértice de la parábola $y^2-6y-8x+41=0$ y C el centro de la hipérbola $\frac{(x+2)^2}{12}-\frac{(y-5)^2}{14}=1$. Determiná <u>el valor exacto</u> del radio de la circunferencia con centro en C que pasa por V.

Respuesta: $\sqrt{40}$

Resolución

La expresión canónica de la parábola es $(y-3)^2=8(x-4)$, por lo que V=(4;3), y de la expresión de la hipérbola surge que C=(-2;5). Es posible calcular la distancia entre V y C o determinar la ecuación de la circunferencia con centro en C que pasa por V:

 $(x+2)^2 + (y-5)^2 = 40$ para calcular de forma exacta el valor del radio que es $\sqrt{40}$.

Estos contenidos los podés encontrar en las sesiones 5 y 6.