

TEMA 2

Datos: N_A: 6,02. 10²³ mol⁻¹

 $R = 0.082 \text{ dm}^3.\text{atm.K}^{-1}\text{mol}^{-1}$

Kw $_{(25,0^{\circ}C)}$ = 1,00 x 10 ⁻¹⁴

1.-

a) Una muestra de 190 g de KI de 80% de pureza se hace reaccionar con 8,00 g de O ₂ gaseoso y exceso de agua. La reacción se representa por siguiente ecuación:	a) 60,0 %
4 KI (s) + O₂ (g) + 2 H₂O (l) → 2 I₂ (s) + 4 KOH (ac) Se obtienen 1,10 dm³ de KOH 0,500 M. Calcular el rendimiento de la reacción. Resolver mediante el desarrollo numérico completo sin omitir los planteos ni las unidades.	Resolver al dorso
b) Indicar cuál de los reactivos está en exceso (además del agua) y en qué cantidad.	O ₂ ; 2,11.10 ⁻² mol

Datos: KI (*M* = 166 g/mol); O₂ (*M* = 32,0 g/mol); H₂O (*M* = 18,0 g/mol); I₂ (*M* = 254 g/mol); KOH (*M* = 56,1g/mol)

2.-

4 1-		
a) Ajustar la siguiente ecuación química por el método ion electrón	2 B + 6 NaOH + 3 NaNO ₃ → 2 Na ₃ BO ₃ + 3 NaNO ₂ + 3 H ₂ O	
B + NaOH + NaNO ₃ \rightarrow Na ₃ BO ₃ + NaNO ₂ + H ₂ O	25 Total Total Co. 7 2 Hasbos	
b) Indicar la fórmula del agente oxidante, qué elemento cambia su	NaNO ₃ o (NO ₃) ⁻	
estado de oxidación en el mismo y cuál es el cambio que se produce en	Nitrógeno (N), de +5 a +3	
el estado de oxidación de dicho elemento		

3.-

a) En un recipiente rigido de 2,00 dm³, a una dada temperatura T, se encuentran en equilibrio 0,150 mol de SO ₃ (g); 0,200 mol de SO ₂ (g) y 0,300 mol de O ₂ . La ecuación que representa la reacción es: 2 SO ₃ (g) 2 SO ₂ (g) + O ₂ (g) Kc = 0,266 A temperatura constante se agregan 2,50 . 10 ⁻² mol de SO ₃ . Indicar hacia donde evoluciona el sistema para volver al equilibrio. Explicar relacionando los valores de Qc y Kc. Resolver mediante el desarrollo numérico completo sin omitir los planteos ni las unidades.	a) Qc < Kc Evoluciona hacia productos Responder al dorso
b) Al sistema en equilibrio se le aumenta la presión total al doble a T constante. Seleccionar la/s opción/es correcta/s: i) Kc aumenta; ii) Kc permanece constante; iii) Kc disminuye.	==

4.-

a) Un recipiente rígido de 15,0 dm³ contiene 28,0 g de N₂ (g) y cierta cantidad de O₂ (g) a 20,0 °C. La presión de la mezcla gaseosa es 5,61 atm. Calcular la fracción molar del O₂ (g) en la mezcla. Resolver mediante el desarrollo numérico completo sin omitir los planteos ni las unidades.	Resolver al dorso 0,714
a) Se tienen 0,750 dm³ de una solución acuosa de HCl de pH = 2,80 que se diluyen con agua hasta obtener 2,50 dm³ de solución. Calcular el pH de la solución diluida. Resolver mediante el desarrollo numérico completo sin omitir los planteos ni las unidades.	3,32

5.-

a) Una solución de un ácido débil HA, que se encuentra en equilibrio químico, presenta una concentración del ácido 2,00.10 ⁻³ M y de su base conjugada 5,00.10 ⁻⁵ M. Calcular el valor de pKb de la base conjugada. Resolver mediante el desarrollo numérico completo sin omitir los planteos ni las unidades.	
b) Indicar cuál o cuáles de las siguientes afirmaciones es o son correcta/s:	iii
i) El pH de una solución de un ácido muy diluido puede ser mayor que 7.	
ii) El pOH de una solución de una base débil siempre es menor que el pOH de una solución de una	
base fuerte.	
iii) En una solución de una base débil, siempre se cumple la [OH] es mayor que la [H ₃ O ⁺]	

Para los estudiantes de la carrera Odontología

 ii) Escribir la fórmula semidesarrollada de un isómero estructural del 2-bromo-4-metilpentano que sea un halogenuro de alquilo terciario. iii) Indicar cuál/cuáles de las siguientes sustancias presentan actividad óptica: I) CH₃-CH(OH)-CH₂-CH₃; II) CH₃-CH(CH₃)-(CH₂)₂-CH₂-OH 	i) N-etil-2- metilpentanoamida ii) Ej. Fórmula de 2-bromo-2 metilpentano iii) I
III) CH ₃ -CH ₂ -C(CH ₃)(OH)-CH ₂ -CH ₃	iii) I