

ÁLGEBRA FCE

PRIMER PARCIAL

05 - 10 - 18 TEMA 4

✓ Ejercicio 1

1) En una economía hipotética de dos industrias A y B la matriz de los coeficientes tecnológicos es

$$A = \begin{pmatrix} \frac{3}{20} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

Si la demanda final es $DF = \begin{pmatrix} 65 \\ 130 \end{pmatrix}$

- a) Hallar el nuevo vector producción
- b) Completar el nuevo cuadro

$$I-A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{3}{20} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{17}{20} & -\frac{1}{5} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \Rightarrow \begin{pmatrix} I-A \end{pmatrix}^{-1} = \frac{1}{|I-A|} Adj(I-A) = \frac{1}{13/40} \begin{pmatrix} \frac{1}{2} & \frac{1}{5} \\ \frac{1}{2} & \frac{17}{20} \end{pmatrix} \Rightarrow \begin{pmatrix} I-A \end{pmatrix}^{-1} = \begin{pmatrix} \frac{20}{13} & \frac{8}{13} \\ \frac{20}{13} & \frac{34}{13} \end{pmatrix}$$

$$X = \begin{pmatrix} \frac{20}{13} & \frac{8}{13} \\ \frac{20}{13} & \frac{34}{13} \end{pmatrix} \cdot \begin{pmatrix} 65 \\ 130 \end{pmatrix} = \begin{pmatrix} 180 \\ 440 \end{pmatrix}$$

	\boldsymbol{A}	В	DF	PT
\boldsymbol{A}	27	88	65	180
В	90	220	130	440
VA	63	132	195	•
PT	180	440	•	620

✓ Ejercicio 2

- 2) Sean las matrices $A = \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} e I \in \Re^{2x^2}$
 - a) Hallar la matriz A^{-1}
 - b) Hallar la matriz $X \in \Re^{2x^2} / A \cdot X + I = B^T$

$$A = \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix} \Rightarrow |A| = \begin{vmatrix} 4 & 3 \\ 2 & 2 \end{vmatrix} = 2$$

$$A^{T} = \begin{pmatrix} 4 & 2 \\ 3 & 2 \end{pmatrix} \Rightarrow AdjA = \begin{pmatrix} 2 & -3 \\ -2 & 4 \end{pmatrix} \Rightarrow A^{-1} = \frac{AdjA}{|A|} = \begin{pmatrix} 1 & -\frac{3}{2} \\ -1 & 2 \end{pmatrix} \Rightarrow \begin{vmatrix} A^{-1} = \begin{pmatrix} 1 & -\frac{3}{2} \\ -1 & 2 \end{vmatrix}$$

b)
$$X \in \Re^{2x^2} / A \cdot X + I = B^T \Rightarrow X = A^{-1} \cdot (B^T - I)$$

$$B^T - I = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

$$X = A^{-1} \cdot \left(B^{T} - I\right) = \begin{pmatrix} 1 & -\frac{3}{2} \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -7 \\ -3 & 11 \end{pmatrix} \Rightarrow X = \begin{pmatrix} -\frac{1}{2} & -3 \\ 1 & 4 \end{pmatrix}$$

3) La matriz
$$A = \begin{pmatrix} x & x+y & x-z \\ x-y & y & y+z \\ x+z-2 & z-y & z \end{pmatrix}$$
 es triangular superior:

$$\Box$$
 a) $x = 0, y = 0, z = 1$

$$\Box$$
 b) $x = y = z = 0$

$$\Box$$
 c) $x = -y = z$

$$\Box$$
 d) $x = y = z = 1$

La matriz
$$A = \begin{pmatrix} x & x+y & x-z \\ x-y & y & y+z \\ x+z-2 & z-y & z \end{pmatrix}$$
 es triangular superior $si \begin{cases} x-y=0 \\ x+z-2=0 \Rightarrow \begin{cases} x-y=0 \\ z-y=0 \end{cases}$

$$\Rightarrow \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 1 & 0 & 1 & | & 2 \\ 0 & -1 & 1 & | & 0 \end{pmatrix} F_2 - F_1 \approx \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 2 \\ 0 & -1 & 1 & | & 0 \end{pmatrix} F_3 + F_2 \approx \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 2 & | & 2 \end{pmatrix} \Rightarrow \begin{cases} x - y = 0 \to x - 1 = 0 \to x = 1 \\ y + z = 2 \to y + 1 = 2 \to y = 1 \\ 2z = 2 \to z = 1 \end{cases}$$

$$x = 1, y = 1, z = 1$$

Respuesta correcta es la d)

4) El o los valores de $m \in \Re$ para que el sistema homogéneo asociado a $\begin{cases} 3x + my + z = -1 \\ 2mx - y + 2z = 0 \\ 2x - my - 2z = -1 \end{cases}$

únicamente la solución trivial

 \square a) $\forall m \in \Re$

 \Box b) $m = -4 \land m = -1$

 \Box c) $m \neq -4 \land m \neq -1$

 \square $d) \not\exists m \in \mathfrak{R}$

Para que el sistema homogéneo asociado admita sólo la solución trivial, debe ser SCD y por lo tanto su determínate debe ser distinto de 0

$$\begin{cases} 3x + my + z = -1 \\ 2mx - y + 2z = 0 \Rightarrow \\ 2x - my - 2z = -1 \end{cases} \begin{cases} 3x + my + z = 0 \\ 2mx - y + 2z = 0 \Rightarrow \\ 2x - my - 2z = 0 \end{cases} \Rightarrow \begin{cases} 3 & m & 1 \\ 2m & -1 & 2 \\ 2 & -m & -2 \end{cases} \neq 0 \Rightarrow \text{solución trivial}$$

$$\begin{vmatrix} 3 & m & 1 \\ 2m & -1 & 2 \\ 2 & -m & -2 \end{vmatrix} = 2 \cdot m^2 + 10 \cdot m + 8 \neq 0 \Leftrightarrow \boxed{m \neq -4 \land m \neq -1}$$

Respuesta correcta es la c)

✓ Ejercicio 5

- 5) Sabiendo que el vector \overrightarrow{AG} está definido por los puntos A = (2;1) y G = (k;4) y siendo $|\overrightarrow{AG}| = 5$, el conjunto de valores de $k \in \Re$ es:
 - \Box *a*) $k \in \{-2, 6\}$

□ *b*) $k \in \{2; 6\}$

 $\square \quad c) \ k \in \{-6; 2\}$

Determinamos en primer lugar el vector \overrightarrow{AG} , restando el punto G (extremo) con el punto A (origen) $\overrightarrow{AG} = G - A = (k;4) - (2;1) = (k-2;3)$

$$|\overrightarrow{AG}| = \sqrt{(k-2)^2 + 9} = 5 \Rightarrow (k-2)^2 + 9 = 25 \Rightarrow (k-2)^2 - 16 = 0 \Rightarrow k^2 - 4k + 4 - 16 = 0$$

$$\Rightarrow k^2 - 4k - 12 = 0 \Rightarrow \boxed{k = -2 \lor k = 6}$$

Respuesta correcta a)

6) Sean los vectores $\vec{u} = (6; -4; 2k)$ y $\vec{v} = (k; k; -1)$ El o los valores de $k \in \Re$ para que los vectores sean ortogonales son:

$$\square a$$
 $k=1$

$$\Box$$
 b) $\forall k \in \Re$

$$\Box c$$
) $k = 0$

$$\square$$
 $d) \not\exists k \in \mathfrak{R}$

Dos vectores son ortogonales si y sólo si su producto escalar es nulo, planteamos el producto escalar

$$\vec{u} \cdot \vec{v} = (6; -4; 2k) \cdot (k; k; -1) = 0 \Rightarrow 6k - 4k - 2k = 0 \Rightarrow 0 = 0 \Rightarrow \forall k \in \Re$$

Respuesta correcta b)

✓ Ejercicio 7

7) Sea $A = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ sabiendo que |A| = 4, los determinantes: $|-3A^2|$ y $\begin{vmatrix} -r & -s \\ 2p & 2q \end{vmatrix}$ son respectivamente:

$$\Box$$
 a) -48,8

$$\supset b) 144,8$$

$$\Box$$
 c) 144, -8

$$\Box$$
 d) 48,8

Aplicamos propiedades de los determinantes para calcular los determinantes pedidos

$$\left|-3A^{2}\right| = \left(-3\right)^{2} \left|A^{2}\right| = 9|A|^{2} = 9.4^{2} = 9.16 = 144 \Rightarrow \left|-3A^{2}\right| = 144$$

$$\begin{vmatrix} -r & -s \\ 2p & 2q \end{vmatrix} = (-1).2 \begin{vmatrix} r & s \\ p & q \end{vmatrix} = (-1).2.(-1) \begin{vmatrix} p & q \\ r & s \end{vmatrix} = (-1).2.(-1).4 = 8 \Rightarrow \begin{vmatrix} -r & -s \\ 2p & 2q \end{vmatrix} = 8$$

Respuesta correcta b)

8) El conjunto de los
$$k \in \Re$$
 tales que la matriz $\begin{pmatrix} 1 & k & 0 \\ 5 & k^2 & 0 \\ 0 & 0 & k+3 \end{pmatrix}$ no tenga rango 3:

 \Box a) \varnothing

 \Box b) $\Re -\{-3,0,5\}$

 \square c) \Re

 \Box *d*) {-3,0,5}

A no tiene rango 3 si su determinante es nulo

$$\begin{vmatrix} 1 & k & 0 \\ 5 & k^2 & 0 \\ 0 & 0 & k+3 \end{vmatrix} = 0 \Rightarrow (k+3)(k^2 - 5k) = 0 \Rightarrow k.(k+3)(k-5) = 0 \Rightarrow \boxed{k = -3 \lor k = 0 \lor k = 5}$$

Respuesta correcta d)

✓ Ejercicio 9

- 9) Sea el plano de ecuación $\pi: x+2y+z-10=0$, la ecuación de la recta r perpendicular al plano que pasa por el punto C=(-1;4;3) expresada en forma vectorial es:
 - \Box a) $x+1=\frac{y-4}{2}=z-3$

 \Box b) $\frac{x-1}{-1} = \frac{y-2}{4} = \frac{z-1}{3}$

 \Box c) $r:(-1;4;3)+\lambda(1;2;1)$

 \Box d) $r:(1;2;1)+\lambda(-1;4;3)$

Si el plano tiene por ecuación: $\pi: x+2y+z-10=0$ entonces su vector normal es: $\vec{n}=(1;2;1)$

Teniendo en cuenta que la recta pasa por el punto C, entonces la recta expresada en forma vectorial es:

$$(x;y;z) = (-1;4;3) + \lambda(1;2;1)$$

Respuesta correcta c)

✓ Ejercicio10

- 10) Sean $A, B \in \Re^{nxn}$ dos matrices inversibles. Determinar que opción de las siguientes es falsa:
- \Box a) det $(A \cdot B) = det(B^T \cdot A^T)$

 \Box b) $tr(A \cdot B) = tr(B \cdot A)$

 \Box c) $det(A \cdot A^{-1}) = det(I)$

 \Box d) $det(A^2) = det(I)$

Analizadas las distintas opciones, se concluye que la falsa es:

$$det(A^2) = det(A.A) = det(A).det(A) = det(A)^2 \neq det(I)$$

Respuesta correcta d)