Álgebra FCE INTENSIVO 2017		APELLIDO:										SOB	SOBRE №:						
SEGUNDO PARCIAL		NOMBRES:										Dura	Duración del examen: 2 hs						
30		DNI/CI/LC/LE/PAS. Nº:										CAL	CALIFICACIÓN:						
UBAXXI		E-M	E-MAIL:										Apel	Apellido del evaluador:					
TEMA	TELI	TELÉFONOS part: cel:										Apellido del evaluador.							
02 - 03 - 17 Completar con letra clara, mayúscula e imprenta																			
1	2 3 4				5	6			7		8		9		10				
1.5	1.5		1.5		1.5		1.5		0.	0.5		0.5		0.5		0.5		0.5	
Los alumno	is dehon i	ndicar	en cada	uno da	los 10		_	la es par					octa cor	una or	uz en ol	lugar oo	rrosnon	diento C	`ada
Los alumno	s uepen i	nuicar (⊎n cada					entes la LE AL Pl							u∠ en el	iugar coi	respon	uiente. C	aua
1) Sea $S = \{(x; y; z; w) \in \Re^4 / x - z = 0, y - w = 0\}$. Una base de S es:																			
	{(0;1;	0;1).	(1;0;	1;0).	(0;0;	0;0)}													
\Box c)	``		() -)	<i>'</i> ''	· / · /	· /)													
	((/ /	· /)							<u> </u>			((/ ΄	· / · /	J					
cantidad de cada tipo deberá producir a fin de obtener la máxima utilidad? $ \Box a) (x; y; S_1; S_2) = (48;0;114;0) Z = 2880 \qquad \Box b) (x; y; S_1; S_2) = (0;60;0;80) Z = 2880 $ $ \Box c) (x; y; S_1; S_2) = (0;60;48;0) Z = 2880 \qquad \Box d) Ninguna de las anteriores $																			
	(~, y,	- ₁ ,5 ₂	<i>)</i> (°,	, T	-, · <i>J</i>						u)	ı ınıgı		us u		- U			
3) Sea S =	={(1;0;	0),(3;	2;1),(-1;a;	2)}. I	El conj	iunto	de los	$a \in$	R p	ara l	los cu	ales S	$S=\Re^3$	es:				
□ a)	{4}										b)	ℛ − {	4}						
$\begin{array}{c c} \square & a) & \{4\} \\ \hline \square & c) & \emptyset \end{array}$																			
4) Sean Z = 2x + 3y, y R la región de vértices A = (1;3), B = (2;4) y C = (a;2). El valor de a ∈ ℜ para que el máximo de Z en la región R se alcance en un segmento es:											ue el								
	$a = 0$ $ \exists a \in S$)R										a = 5 $a = 2$							
5) El conjunto de $k \in \Re$ para que el conjunto solución del sistema $\begin{cases} 2x + 6y - 2z = 0 \\ 2y + kz = 0 \text{ sea un subespacio de dimS=0 es:} \\ 3y + 6z = 0 \end{cases}$ $\boxed{\begin{array}{c ccccc} a) \varnothing & \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$																			
																	VER 2	AL DO	RSO_
 ⋉																			
<u>~</u>															TAL	ON P	ARA I	EL ALI	JMNC

EJERCICIO 3

EJERCICIO 4

EJERCICIO 5

2do Parcial ALGEBRA Intensivo 2017 – TEMA 1

EJERCICIO 2

EJERCICIO 1

6) El valor de $\alpha \in \Re$ para el cual el vector $\vec{v} = (1;2;\alpha)$ es combinación lineal del conjunto de vectores $H = \{(5;1;4),(1;-1;2)\}$									
	$\Box b) \alpha = -5$ $\Box d) \alpha = -1$								
7) Sean $A = (4;6), B = (-1;7)$ y la región $R : \begin{cases} x+y \ge 6 \\ 7x-5y \ge -35 \end{cases}$. Se puede afirmar que $x \le 5$									
$\Box \ a) \ A \notin R; B \in R$ $\Box \ c) \ A \in R; B \in R$	$ \begin{array}{ccc} \Box & b) & A \in R; B \notin R \\ \Box & d) & A \notin R; B \notin R \end{array} $								
L C) AER, DER	L a) AER, DER								
8) Los vectores $\vec{u} = (2;1;0), \vec{v} = (-1;-2;1)$ y $\vec{w} = (1;-1;1)$ v $\vec{u} = (1;-$	erifican que: D Son linealmente independientes D d) Ninguna de las anteriores								
9) Sea la región R del plano de vértices $A = (0;5)$, $B = (2;8)$, $C = (6;9)$, $D = (7;6)$ y $Z = 3x + y$. Entonces Z en R alcanza un valor máximo en:									
\Box a) \overline{DA}	\Box b) \overline{AB}								
\Box c) \overline{BC}	\Box d) \overline{CD}								
10) La dimensión del subespacio solución del sistema homo	ogéneo asociado a $\begin{cases} 4x - y + z = 3 \\ 8x - 2y + 2z = 2 \end{cases}$ es:								
	□ b) 1								
\Box c) 3	□ d) 2								

FIRMA DEL ALUMNO

TALON PARA EL ALUMN										
2do Parcial ALGEBRA Intensivo 2017 – TEMA 1										
EJERCICIO 6	EJERCICIO 7	EJERCICIO 8	EJERCICIO 9	EJERCICIO 10						